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We show that the hyperbolic complex numbers or double numbers can be used 
to generate solutions of two-dimensional Minkowskian sigma models with values 
on noncompact manifolds. 

1. INTRODUCTION 

Two-dimensional sigma models are interesting objects for both physi- 
cists and mathematicians. In fact, they are nice examples of integrable 
systems with dual symmetry (Eichenherr and Forger, 1979) and infinitely 
many conservation laws (Forger, 1983). Furthermore, they provide a good 
theoretical laboratory to investigate the four-dimensional gauge theories 
(such as Yang-Mills systems). Mathematically, these sigma models can be 
defined as harmonic maps (Fujii, 1985) from a two-dimensional space to 
certain manifolds (Riemannian symmetric spaces , . . .  ). Many methods have 
been developed in order to construct explicit solutions for the two- 
dimensional sigma models. These methods were initiated by the work of 
Pohlmeyer (1976), Zakharov and Mikhalov (1978), and Eichenherr and 
Forger (1980). More precisely, a method of construction of multisoliton 
solutions has been introduced by Saint-Aubin (1982), Harnad et al. (1984a) 
for sigma models with values on Riemannian symmetric spaces and has 
been extended to general integrable systems (Harnad et al., 1984b). For the 
particular case of the CP n model the so-called "holomorphic" method was 
introduced by Borchers and Garber (1980) and systematically developed 
by Zakrzewski (1982, 1984). More recently, Antoine and Piette (1986) have 
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reexamined, in the light of a new geometrical result, the method of construc- 
tion of solutions for classical sigma models on (real, complex, and quater- 
nionic) Grassmann manifolds of compact or noncompact case. 

The above methods intensively use usual complex analysis. In par- 
ticular, the Zakrzewski (1982, 1984) method is based on the construction 
of a basis of analytic vectors. In this paper we show that the so-called 
hyperbolic complex numbers and hyperbolic analytic functions can be used 
to construct particular solutions of two-dimensional sigma models with 
values on noncompact spaces. 

The hyperbolic complex numbers or double numbers have been exten- 
sively studied by mathematicians in the framework of pseudo-Euclidean 
geometries (Yaglom, 1968), Cayley-Dickson algebras (Polubarinov, 1985), 
and Clifford algebras (Salingaros, 1981). They were introduced by Clifford 
(1968), who called them "motors" because he was concerned with the use 
of these numbers in mechanics.  Muses (1970) was the first to point out the 
physical usefulness of hyperbolic numbers. Recently these numbers have 
been introduced by Kunstatter et al. (1983) in a geometric interpretation 
of a generalized theory of gravitation and by Lambert and Kibler (1986) 
in order to generate nonbijective canonical transformations. 

2. H Y P E R B O L I C  C O M P L E X  A L G E B R A  A N D  A N A L Y S I S  

Let j denote the so-called hyperbolic imaginary unit defined by j 2 =  + 1. 

Then the set of hyperbolic complex numbers ~ can be defined by 

~ = {z = x + j y ;  x, y c E } - = - N |  

The conjugation number of z = x + j y  is ~ = x - j y  and the norm of z is the 
real number ]z ] such that [z ] 2 = x 2 - y2. When ]z 12 r 0, it is possible to define 
a unique inverse z - l = ~ / l z l  2. The numbers z such that Iz12=0 and z # 0  
are called zero divisors and lead to interesting algebraic problems (Demys, 
1987). Because of these zero divisors Ft is an (Abelian) ring and not a field. 

For those preferring not to work with the algebraic unit j it is possible 
to construct 2 x 2 matrix representation of f~ over N. This is achieved by 
using the following identifications: 

1 I10 ~ 
Hence the hyperbolic complex number z = x + j y  can be represented by the 
matrix 

x'; Y 
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Let u(x, y) and v(x, y) be differentiable functions defined on a domain  D 
o f  R 2. It is natural to in t roduce the funct ion f ( z )=  u(x, y)+jr(x,  y). This 
funct ion is said to be hyperbol ic  analytic (or h-analytic) if and only if the 
limit 

f ' ( z )  = lim f ( z  + h) - f ( z )  
h+o h 

has the same value irrespective o f  the path along which h tends to zero 
(and h/~ r 0). I f  u and v are sufficiently derivable, then the necessary and 
sufficient condit ions for the funct ion f (z )  to be h-analytic are 

Ou Ou Ou Ov 
(1) 

Ox Oy' Oy Ox 

which are the hyperbol ic  analogs of  the C a u c h y - R i e m a n n  equations. It is 
obvious to check from equat ions (1) that the relations 

0 2 0 2 
= ( 2 )  [~U = 0 ,  [ ~ )  = 0; []  OX 2 OY 2 

hold. Furthermore,  equat ions (2) enable us to write u and v as 

u = F ( x + y ) + G ( x - y ) ,  v = F ( x + y ) - G ( x - y )  (3) 

where F and G are sufficiently ditterentiable arbitrary functions o f  x and 
y in D. It is interesting to note that u and v are constant  along the lines 
x = + y  + c, where c is an arbitrary real constant.  These lines are the charac- 
teristics o f  the system defined by equations (1) and when c = 0, they reduce 
to the set o f  zero divisors o f  1). From equat ions (3) and identifying x with 
a time variable, it is then possible to consider any h-analytic funct ion as a 
superposi t ion o f  two waves (Laurentiev and Chabat ,  1980). 

Due to the fact that  f~ is a ring, it is natural to endow the Cartesian 
produc t  1)n with the structure of  an D-module .  

3. H Y P E R B O L I C  C O M P L E X  G R A S S M A N N I A N  M A N I F O L D S  

Let V be a vector o f  the n-dimensional  ~ - m o d u l e  1~ n. As in the usual 
complex case, we int roduce the vector V # defined by V # =  ~r .  Hence we 
are able to endow 1)n with an indefinite norm. 

We define the norm II v n o f  v by 

II vi i  ~= v ~ v  = v v  ~ (4) 

Let us now consider the linear mapping  T: 1)n _> 1)n such that 

II rV l [  ~= tl VII = (5) 
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From equations (4) and (5) we easily check that 

T # T = TT # -- ~ (6) 

where ~ is the n x n identity matrix. Following Zhong (1984), we call such 
a mapping a hyperbolic complex unitary transformation. All the T's form 
a group denoted by U(n, f~). Locally we get the following isomorphism 
(Zhong, 1984, 1985): 

U(n, ~2) ~- GL(n, ~) (7) 

Let us introduce the manifold G(N, n; Ft) defined by 

G(N, n; ~)= U(N, Yt)/ U ( N - n , O ) x  U(n,f~) (8) 

Referring to the usual complex case, we call it a hyperbolic complex 
Grassmannian manifold (HCGM). 

When n = 1, the HCGM can be geometrically characterized by the 
following propositions: 

Proposition I. The manifold G(N, 1; f~) is locally isomorphic to the sym- 
metric space 

SL(N, R)/SL(N - 1, ~) x SO(I, 1) 

Proof We know that GL(1,~) is locally isomorphic to SO(l, 1). Then 
Proposition 1 follows immediately from equation (7). 

Let X be a nonisotropic vector of f~ (i.e., a vector of nonzero norm) 
and let Y~(N) be the set of all N x N hyperbolic complex matrices. Then 
let us consider the matrix P(X) of gt(N) defined by 

P ( X )  = xx# / I I  x II = (9 )  

It is easy to check that P ( X )  2= P(X), P(X) # = P(X) ,  and Tr (P (X) )  = 1. 
Hence P(X) is a projector. 

We note that if k is not a zero divisor of I], the equation 

e ( k x )  = P(X) (10) 

holds. Therefore, with each projector P(X) constructed with an arbitrary 
nonisotropic vector X we associate the nonisotropic part Do(X) of the 
straight line D(X) defined by 

D(X) ={Y6t2N:  Y = k X ;  k ~t2} (11) 

Let H(m, n) be the (m+n-1)-dimensional real hyperboloid defined by 
the equation 

m-t- n 
2 2 x j -  ~ x j = l ;  x j cR  

j ~ l  j - - m 4 - 1  

Then we get the following result. 
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Proposition 2. The set of all projectors P(X) defined by equation (9) is 
isomorphic to the coset 

M = H(N, N)/H(1,  1) (12) 

Proof Each P(X) can be associated with Do(X). The set of all Do(X)'s  
can be viewed as the coset (H+ • H_)/ - .  The manifold /4+ (resp. H_) is 
the set of all vectors of norm +1 (resp. -1 )  and - is the equivalence, which 
identifies the vectors of norm either +1 or -1  belonging to the same Do(X). 
From (4) we get the following isomorphisms: 14+ ~- H_ -~ H(N, N). In order  
to identify the vectors of Do(X) having the norm either +1 or -1 ,  we use 
elements of the noncompact group O(1, 1). The latter is isomorphic to 
H(1,  1)• Z2. Hence we get the following isomorphism 

(H+ ~ H_)/~-~H(N, N) /  H(1, 1) 

Remark. From (12) it is easy to see that the manifold M is isomorphic 
to the symmetric space 

SO(N, N ) / S O ( N  - 1, N) • SO(l, 1) (13) 

which is homeomorphic to ~N-~•  (where RP n denotes the n- 
dimensional real projective space). 

From (5) we see that the group U(N; Ut) acts transitively on the 
hypersurface H+ (resp. /4_) defined above. Furthermore, it is possible to 
check that U ( N -  1; O) is conjugated to each isotropy group of an arbitrary 
point of H§ (resp. H_). Hence we get the following isomorphisms: / 4 + -  
H _ ~ - U ( N ; O ) / U ( N - 1 ; I ) ) .  Equation (6) leads to U(1, Ft)~SO(1,1). 
Then the coset H + u H _ / -  happens to be isomorphic to U(N;f~)/ 
U ( N -  1; f~) x U(1; O), i.e., G(N, 1; O). From this we get the following: 

Proposition 3. The set of all projectors P(X) defined by equation (9) is 
isomorphic to the HCGM G(N, 1; O). 

In the usual complex case, the set of all straight lines passing through the 
origin in the vector space C N+~ gives rise to the projective space CP N. From 
the results of this section we identify G(N, 1; O) with the set of  all non- 
isotropic parts of straight lines of the module O n. Thus, G(N, 1; O) happens 
to be the hyperbolic analog of  the complex projective space and can be 
properly defined in the framework of the projective geometry on ring. 

4. SIGMA MODELS ON H C G M  

Let V: O->O N be an arbitrary mapping. We define V(z) as an h- 
analytic vector if and only if each component of V(z) is an h-analytic 
function. 
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Let us consider an (N-1) -d imens iona l  h-analytic vector V(z). We 
define the map P : D ~ D ( N )  by 

1 [ 1 V(z)# 1 
P(z) = 1 + II V(z)Ii = V(z) V(z) V ( z ) q  (14) 

It is easy to see that P(z) defines a projector. As long as z does not belong 
to the singular curve C: 1 + l] V(z) ll2 = 0, it follows from Proposition 3 that 
P(z) can be associated with a point of G(N, 1; D). The main property of 
the map P is given by the following result: 

Proposition 4. The projector P(z) satisfies the equation 

[ P(z),E]P(z)]=O (15) 
where [] is defined by (2). 

Proof. The result comes from the generalization of the Zakrzewski 
(1982, 1984) method to the h-analytic functions (see Piette and Lambert, 
1987). 

Equation (15) appears to be the hyperbolic complex analog of the field 
equation of the two-dimensional Minkowskian sigma model with values on 
a Grassmannian manifold. Therefore P(z) can be considered as a solution 
of the sigma model defined on f~ [i.e., ~2 endowed with the metric diag(1, - 1) 
and with values on G(N, 1; ~) ,  i.e., SO(N, N ) / S O ( N -  1, N) x SO(I, 1)]. 

From a variational approach, (15) can be derived from a Lagrangian 
density L(P) given by 

d ( ~  2 (~ l L(P) =Tr(O,P a"P) = L \ ~ x /  -\O-yy! j (16) 

Let us now illustrate the results of this section by two particular examples. 

Example 1. When N = 2  and n = 1, the HCGM G(N, n; ~) is isomor- 
phic to SO(l, 2)/S0(1, 1) = H(2,  1). We note that the sigma model with 
values on H(2,  1) appears to be connected with the classical theory of 
relativistic strings (Nesterenko, 1987). Let us choose V(z) = z -  a, where a 
is an arbitrary real constant. By a straightforward calculation we get from 
(1) that V(z) is an h-analytic function. The projector P(z) is given by 

1 [ 1 ( x - a ) - j y  1 
P(Z)=l+(x -a )2 -y2  ( x -a )+jy  ( x -a )2 -y2 j  (17) 

We check that (15) holds for this particular P(z). Then (17) provides a 
solution of the Minkowskian sigma model with values on SO ( 1, 2) /SO (1, 1 ). 
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The projector P(z) and the associated Lagrangian density 

L(P) = 4/[1 + (x - a )  2 __y212 

are singular along the same hyperbola: y2 _ (x - a 2) - 1. 

Example 2. When N = 3  and n = l ,  G(N,n;f~) is isomorphic to 
S0(3, 3)/SO(2, 3) x SO(I, 1). Let V(z) be the two-dimensional h-analytic 
vector defined by 

V(z)tr = (.7+ 1, z2 -  2). 

From (14) we easily construct the 3 x 3 matrix P(z). By direct computation 
it is possible to check that (15) holds. As in the preceding example, P(z) 
and the Lagrangian density 

L(P) = 4[(y2-x2)2-4(x + 1)(yZ-xZ-Zx)+ 5] 
[(4X2+ 1)y'  -- (X q- ~ -~ y2 ----~-~2 ---- ~ 2 

turn out to be singular along the same curve. 

5. CONCLUSION 

The main purpose of this paper is to show that the ring of hyperbolic 
complex numbers can be used to construct explicit solutions of some 
nonlinear sigma models with values on noncompact manifolds. As a 
matter of example we give only one explicit solution for the sigma model 
with values on the HCGM G(N, 1;1)) (This can be interpreted as the 
two-dimensional Minkowskian sigma model with values on 
SO(N, N) /SO(N-  1, N) • SO(l, 1)]. Nevertheless, the results of  the 
paper, mainly Proposition 4, can be extended to more general HCGM. This 
will be done in another paper. 

It would be interesting to study the deep connection between the 
particular HCGM G(N, 1; 12) and projective geometries on rings. We know 
indeed on one hand that projective geometries on Clifford algebras are 
interesting objects for both physicists and mathematicians and on the other 
hand that l-I is the simplest noncompact Clifford algebra C (1, 0) (Salingaros, 
1981). 
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